ABSTRACT

The biomodulation effect of diode LASER 940 on marginal bone loss (MBL) around implants supporting mandibular hybrid prosthesis in controlled diabetic patients was evaluated. Twenty completely edentulous patients with moderately controlled diabetes mellitus (DM) (glycated hemoglobin (A1c [HbA1c] =8.1%–10.0 %) were selected to participate in this study. All patients received upper and lower complete dentures. Four mandibular straight implants were inserted in all patients then patients were divided randomly into control group (CG) and Laser group (LG). In LG diode LASER biomodulation with 940nm wavelength with energy 30J and 60 sec was applied around each implant. Both groups were immediately loaded with acrylic interim hybrid prosthesis after modifying complete lower denture. Interim prosthesis used during the follow-up period till full patient satisfaction was achieved then a definitive porcelain fused to metal hybrid prosthesis was fabricated. MBL was measured using digital periapical radiographs with standardized long cone paralleling technique at implant loading (0 months or baseline), 6 and 12 months. MBL was calculated at T1 (06- months), T6 (612- months) and T12 (012- months) follow-up periods.

LG showed statistically significant lower marginal bone loss MBL than the CG at T1 and no statistically significant difference in MBL at T6 and T12 follow-up periods. Within the limits of this study, low-level LASER biomodulation (LLLB) may significantly decrease the MBL around immediately loaded implants supporting mandibular hybrid prosthesis in controlled diabetic patients at (T1) but has no effect on MBL in the subsequent (T6 and T12) follow-up periods.

Key Words: Bio-modulation, LASER, Implant supported mandibular hybrid prosthesis, Diabetes mellitus.

INTRODUCTION

Dental implant is considered as one of the most widely employed procedures in dental practice especially for edentulous patients as they improve the quality of life with reasonable cost. Many factors affect the success rate of dental implants either local or systemic factors. Systemic conditions that negatively influence the success rate of implants include osteoporosis, immune deficiency virus infection and diabetes mellitus

Diabetes mellitus (DM) is a metabolic disease with defective insulin secretion resulting in chronic hyperglycemia. Bone is affected by DM, with reduction in osteoblast activity and imbalance between the coupling of bone formation and resorption, resulting in an imbalance in bone turnover. Such imbalance leads to bone mineral density (BMD) reduction that leads to the development of the clinical condition of osteoporosis and increase the incidence of fractures and delayed healing due to the poor bone quality.

Developing technologies that can prevent bone loss and increase bone mass in DM are essential that includes medications, physical activity programs and recently, low level laser biomodulation (LLLB). Laser biomodulation has a stimulatory effect on bone tissue that increases bone cell proliferation and accelerate bone metabolism in a series of different pathological conditions including DM. The longevity of dental implants is highly dependent on integration between implant and surrounding bone where osseointegration is becoming the most accepted phenomenon for success in implants’ procedures.

Diode LASER is antibacterial in nature and can be used to varying degrees to disinfect the osteotomy to improve dental implant bone contact either before implant placement or after immediately loaded implant supported prosthesis. Some studies showed the alveolar bone height was preserved while the bone density was increased in the side exposed to low level LASER. Low level LASER application stimulates bone formation and maturation around the implants.

On investigating the effects of applying of low-level LASER on human osteoblastic cell grown on titanium discs, it was found that LLLB stimulates the expression of
Upper and lower complete dentures were constructed using the conventional steps for all patients. Dentures were checked for good retention, stability, patient satisfaction, good esthetics, proper vertical dimension, occlusion, and mastication. Dentures were delivered to the patients 3 months before implant insertion to enhance muscle adaptation.

The lower denture was marked using fiduciary markers on seven separate positions on different levels to the occlusal plan on the buccal and labial flanges of the denture in contact area between artificial teeth to aid in planning of the implant sites and markers act as radiopaque markers material, so no scatter occurs during scanning. The implant planning software program allowed the clinicians to study the bone bed in relation to the position of the artificial teeth. Implant planning was done for all patients with the same clinician.

CBCT was done while patient wearing the modified lower complete denture and patient biting in centric occlusion. The implant planning software program was used to allow the clinician to study the bone bed in relation to the position of the artificial teeth. Four straight conventional interactive implants (Implant direct conical connection, USA) of height 10 mm and diameter 4 mm were planned for all patients.

Surgical protocol:

All patients received four straight mandibular implants in the preplanned locations according to the available adequate bone guided by preoperative cone beam computerized tomography (CBCT) in bone density not less than D2 following the standard protocol steps with sequential drilling for each implant then each implant was inserted and screwed with a final torque of 45 N/cm using torque ratchet to the bone level. Same oral and maxillofacial surgeon performed the surgical procedures.

Randomization of patients to be allocated into 2 groups was done using a computer software (Minitab 17, State College, PA), after providing the software with patients' information, into two groups; control group (CG) and LASER group (LG).

Low-level laser Biomodulation (LLLB):

For LG, Biomodulation was done using -Semiconductor diode (Medium InGaAsP, Epic Biolase company, class IV LASER, USA) with wavelength 940 nm (0.5mWatt, 30J and 60 sec) in continuous mode. Biomodulation was applied apically from the labial site of the outer cortical plate of bone to increase the area exposed to low level LASER so crestal bone height was preserved and bone density was increased.[13]

Also biomodulation was done coronally to the osteotomy around each implant for 60 sec in a non-contact mode (Figure 1). The LLLB was applied by the same clinician (G.R.M.) after training, instruction, and calibration. Both patient and clinician followed laser safety measures by wearing protective eye goggle.

METHODOLOGY

Twenty edentulous patients with age ranged between 40-60 years old were selected to share in this study from the out- patient clinic of Prosthodontic department, faculty of dentistry, Ain-shams university.

Inclusion criteria:

were patients having adequate interarch space, normal maxillomandibular relation, adequate bone height and width (to accommodate a 10 mm height and 4 mm diameter implant) in the edentulous mandible verified by preoperative CBCT, patients with moderately controlled type 2 diabetes mellitus with glycosylated HbA1c ranging from 8.1% to 10.025% on regular 3-month checks, and at least 6 months since last extraction.

Exclusion criteria:

were patients with heavy smoking habits, history of cardiovascular disorders or liver diseases and history of anticoagulant therapy, patients with history of bisphosphonate therapy or any disease that would prevent healthy osseointegration of dental implants.

Patient’s approval:

- The whole surgical and prosthetic protocol was explained to the patients in details before starting the treatment. The patients were informed about the benefits from the research. Patients agreed to be part in the study and signed on an informed consent form. All data were kept confidential.

Surgical and prosthetic procedures

Upper and lower complete dentures were constructed.
Prosthetic protocol

Multi-unit abutments were screwed to the four implants with torque 25N.

Placement of titanium sleeves

Index position of the abutments was done using bite material (3M ESPE imprint 4 bite VPS bite registration material, Germany) in fitting surface of already presented lower complete denture.

Four holes were made in denture for titanium sleeves, holes were large enough and rechecked intraoral for proper seating. Titanium sleeves were screwed to the abutments and hollowed out denture was placed over the titanium sleeve to check denture passive fit.

Reduction of titanium sleeves height was done by using a marker (red high spot indicator, Arti spot 2, Köln, Germany) to mark proper height of the sleeves to the level of occlusal plan before pick-up step. The sleeves were trimmed of excess height was done by using metallic disc till the previously determined mark. Sleeves were screwed to the abutments and hollowed out denture was reseated, and the patient is asked to bite in centric occlusion.

Rubber dam material (Sanctuary dental dam, Sanctuary health SDN,BHD,Malaysia) was used after being cut into small sized squares and attached around the titanium sleeves. Small piece of cotton was used on the top of the screw access of the titanium sleeves so no pick-up material blocks screw access opening.

Pick up of titanium sleeves - cold curing acrylic resin (Chair side hard denture relining material Promedica dental material GmbH, Germany) was used to pick up the titanium sleeves in the lower denture. Cold curing acrylic resin was injected around the sleeves and with the holes created in the denture. The denture was seated, excess resin on the top access of the sleeves was removed and the patient was asked to bite in centric occlusion till the resin was totally set.

Converting lower complete denture to lower interim hybrid prosthesis

The borders, and flanges were trimmed. A sharp angles or edges were removed too. The tissue side of the acrylic interim prosthesis was made convex and polished for better hygiene. (Figure 2).

The acrylic interim hybrid prosthesis was then screwed back to the abutments in the mouth occlusion was re-checked with articulator paper to be adjusted. Simultaneous bilateral point contacts on all teeth, in lateral and protrusive movement, group function was used on all anterior teeth. The screw access was filled with a small piece of cotton and composite resin material was applied (Filtek supreme ultra-universal restoration, GmbH, Germany) to close screw access and avoid food entrapment in it.

Acrylic interim prostheses are frequently used as provisional restorations for immediate loading. Conversion of the patient’s satisfactory existing denture to a screw-retained implant fixed prosthesis (hybrid prosthesis) was described to splint implants together using acrylic resin denture base and enables the clinician to deliver the prosthesis in a few hours.

All the patients were given strict oral hygiene instructions as it significantly affect bone loss around dental implant. Patients were advised to follow soft, nutritious diet and chew carefully and avoid hard or tough foods during first 4 weeks. In addition, several recall visits every 3 month were scheduled to monitor plaque levels during the course of the study.

At the last follow-up visit, the final hybrid prosthesis was fabricated as patients were already satisfied with the shape and form of interim hybrid prosthesis. Final impression for the four straight implants was taken with implant verification jig and a custom tray were provided for a direct open tray impression technique using polyether impression material (Pentamix, 3M ESPE).

Cotton pieces positioned on the top of the sleeves was removed with explorer probe and with a unigrip screwdriver the prosthesis was unscrewed. Screws were kept aside till interim hybrid prosthesis is being finished.

Figure (1):

a) Epic diode 940nm device, b) Application of diode laser apically from the labial site of the outer cortical plate of bone.
The implant analogues were screwed to the transfer coping. The impression was poured to obtain final stone cast and fabrication of final mandibular hybrid prosthesis porcelain fused to the metal framework (PFM) was done. (Figure 3)

Figure (2): a) Trimmed titanium sleeves, b) Attachment of rubber dam, c) Hollow out space in denture for titanium sleeves, c) Prosthesis was unscrewed after pick-up was done & flanges reduced.

Figure (3): The definitive PFM hybrid prosthesis post one year follow-up.
Radiographic outcomes:

Marginal bone height was radiographically evaluated in both groups CG and LG at time of immediate implant loading, after 6 and 12 months where mesial and distal marginal bone height measures for each implant were assessed. Standardized long cone paralleling technique was used to provide periapical follow up radiographs. Rinn technique (XCP Extension Cone Paralleling, DENTSPLY Rinn Corporation, USA) was followed in all follow up visits by the same clinician blinded by the nature of the study. Rinn tech uses Rinn periapical film holder, XCP instrument for extension long cone to mount x-ray tube and phosphorous x-ray plate to receive image.

Standardization of the phosphorous x-ray plate position in every follow up visit is done by folding a putty rubber base impression material (Express XT VPS, 3M ESPE) around the bite-block then a bite registration was obtained for each plate in closed mouth position, the putty bite-block with the occlusal registration was saved aside for the follow-up recall visits. Same x-ray machine (Fona XDC, Fona, Assago, Italy) was used with the following exposure parameter for all patient’s follow up visits for standardization (8 milliamperes and 70 kilovolts for 0.6 seconds with 35 cm focal film distance).

Image data captured by the phosphorous x-ray plate was read by scanner to give digital image. Linear measurements were done on a viewer software (Romsix Viewer software, Planmeca, Helsinki, Finland) for standardization and avoiding human errors or distortion, calibration was done by the visible radiographic implant length of each implant was measured on each image and compared to the actual known length of the implant (10 mm).

Images were imported to the software and a horizontal line was drawn tangential to the implant apex and perpendicular to its long axis. Then two lines were drawn tangential to the implant mesial and distal surfaces starting from the first bone implant contact extending to the horizontal line to give the measure of the mesial and distal marginal bone height (Figure 4). The marginal bone loss follow-up value after 6 months (T1) was calculated by subtracting follow-up visit marginal bone height from the baseline (0 months) marginal bone height. The same was done to calculate the MBL in 12 months (T12) follow-up period. To calculate the MBL in the 6-12 months (T6) follow-up period, marginal bone height at 12 months was subtracted from the marginal bone height at 6 months.

Figure (4): The linear measurements were obtained by calculation of the radiographic length of the individual implant, length of mesial and distal peri-implant marginal bone height.
Statistical analysis:
The data were collected and tabulated to be statistically analyzed. SPSS statistical analysis software (IBM SPSS Statistics version 21, NY USA) was used to analyze the data. Kolmogorov-Smirnov and Shapiro-Wilk tests were used to detect the normal distribution of data. Two-way analysis of variance test (ANOVA) test was conducted to compare the MBL in both groups (CG and LG). The differences between groups were considered statistically significant if the p-value was less than or equal to 0.05 ($p \leq 0.05$).

RESULTS

Twenty completely edentulous patients (13 males and 7 females) with moderately controlled diabetes were enrolled in this study. Their mean age ± standard deviation was 52 ± 7.39 years. All implants in theCG were successful except one implant which showed signs of failure at 6 months follow up visit. On the other hand, no implant failure was observed in LG, hence, the survival rates in the CG and LG were 97.5% and 100% respectively. On comparing the survival rate in both groups, it did not significantly differ between both groups (log rank test, $P = 0.238$). Kolmogorov-Smirnov and Shapiro-Wilk tests proved that MBL data were normally distributed.

Along the study follow-up periods, the MBL was assessed at the mesial and distal of the implants in the CG and LG. The mean of the mesial and distal MBL around each implant in each group was calculated to provide the mean MBL around the implant in the T1, T6 and T12 follow-up periods. Afterwards the mean and standard deviation of the MBL around all implants in each group at each follow-up period was calculated (table 1).

Generally, there was a gradual increase in the values of MBL around implants along the whole study period (from baseline till 12 months) as presented in (Figure 5).

The MBL in the CG was 0.55 ± 0.02, 0.53 ± 0.01, 1.08 ± 0.01 in T1, T6 and T12 follow-up periods respectively. The MBL in the LG was 0.50 ± 0.01, 0.52 ± 0.03, 1.02 ± 0.02 in T1, T6 and T12 follow-up periods respectively. Although the MBL in the LG was less than MBL in the CG in all the study follow up periods, the ANOVA test showed a statistically significant difference between both groups’ MBL in the T1 follow up period only ($p \leq 0.05$).

No statistically significant difference was obtained between the MBL in the CG and LG at the T6 or the T12 follow-periods ($p \geq 0.05$).

Table (1): The mean marginal bone loss (in mm) and standard deviation(SD) in the CG and LG at the different follow-up periods

<table>
<thead>
<tr>
<th>Follow-up Periods</th>
<th>Control group (CG)</th>
<th>Laser group (LG)</th>
<th>ANOVA P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard deviation (SD)</td>
<td>Mean</td>
</tr>
<tr>
<td>0-6 months (T1)</td>
<td>0.55</td>
<td>0.02</td>
<td>0.50</td>
</tr>
<tr>
<td>6-12 months (T6)</td>
<td>0.53</td>
<td>0.01</td>
<td>0.52</td>
</tr>
<tr>
<td>0-12 months (T12)</td>
<td>1.08</td>
<td>0.01</td>
<td>1.02</td>
</tr>
</tbody>
</table>

The significance level was set at $P \leq 0.05$
DISCUSSION

Rehabilitation with dental implant supported prostheses in diabetic patients is considered a valuable treatment modality, nevertheless it can be risky as implants are subjected to failure owing to defects in osseointegration in case of uncontrolled plasma glucose levels. In our study the implant survival rates were high in both groups despite the patients’ moderate glycemic control which was reported in several studies with immediately loaded implants if diabetic patients had controlled plasma glucose level [21,22]. The survival rate of implants in the two groups is attributed to the nature of the mandibular bone with increased density and the biomodulation using diode LASER in LG which improved the healing and accelerated bone regeneration [22]. The dose of LLLB used in the study may affect osseointegration of the implant but no standard protocol is reported [16]. The LASER radiation parameter were chosen based on previous studies [23,24].

The MBL in the CG was 0.55 ± 0.02, 0.53 ± 0.01, 1.08 ± 0.01 in the T1, T6 and T12 follow-up periods respectively. The MBL in the LG was 0.50 ± 0.01, 0.52 ± 0.03, 1.02 ± 0.02 in the T1, T6 and T12 follow-up periods respectively. Although the MBL in the LG was less than MBL in the CG in all the study follow up periods, the ANOVA test showed a statistically significant difference between both groups' MBL in the T1 follow up period only (p ≤ 0.05). No statistically significant difference was obtained between the MBL in the CG and LG at the T6 or the T12 follow-periods (p ≥ 0.05) but still successful osseointegration is present as the given values within the normal range of bone resorption 1.2 mm in the first year as been reported in literature [25,26]. The acceptable marginal bone loss in this study was due to implants inserted in the edentulous mandible most of them in anterior area of mandible which has dense bone with less liability to resorption [27].

No statistically significant difference in MBL between groups after 6 and 12 months due to several causes; First, all implants used were 10 mm in length as permissible by bone anatomy of the selected patients and 4 mm in diameter as it has been reported that diameter is a key parameter for implant integration by increasing the surface area and increasing primary implant stability. [25-30] Second, Implant abutment interface (IAI) is a key point to success as it plays an important role in the survival of implant. Interactive implant was used in this study where its conical connection offers several advantages. Evidence had shown that conical IAI provides resistance to abutment movement, fatigue loading, maximum bending, torque loss and superior bacterial seal compared to other connection systems [31].

If a gap is present at IAI, it becomes favorable for bacterial colonization which in return cause signs of inflammatory reaction by its by product causing marginal bone loss and finally peri-implantitis [32]. On the other hand, conical IAI geometry makes the gap IAI very narrow for bacterial passage. Third, the immediate loading protocol used decrease the possibility of bone loss that may occurs if implant uncovering and abutment connection [33].

Although there was no significant difference in MBL between groups except in the T1 follow-up period, the LG showed lower MBL than CG in all follow-up periods this may be due to the immediate effect of Biomodulation with diode 940nm LASER which is antibacterial in nature and can be used to varying degrees to disinfect a site [34]. Similar research was conducted to study the effect of laser therapy on MBL in implant supported hybrid prostheses. Its results showed that there was no statistically significant difference in MBL between laser and control group along the whole follow-up period. These results are different from the current study results which may be due to the use of different type of laser biomodulation (Er,Cr:YSGG (2790 nm)) and different technique of laser application [35].
Diode LASER stimulates the oesseointegration of the implant after irradiation immediately loaded. Some studies showed the alveolar bone height was preserved while the bone density was increased in the side exposed to low level laser.[10,11,18,36,37] Low level laser application stimulates bone formation and maturation around the implants.[12,14]

CONCLUSION

Within the limitations of this study, it can be concluded that the low-level LASER biomodulation (LLLB) may significantly decrease the MBL around immediately loaded implants supporting mandibular hybrid prosthesis in controlled diabetic patients six months (T1) after implant loading. However, it may have no effect on MBL in the subsequent (T6 and T12) follow-up periods.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

RECOMMENDATIONS:

Regarding the reduced external validity (small sample size, restricted age of the patients and relatively short follow-up period), further clinical studies are needed with larger sample size and longer follow-up periods. It can also be recommended to apply low level LASER biomodulation after 6 and 12 months as a reactivation session specially at marginal bone area around implants as low-level LASER has antibacterial effect that may decrease the further bone loss at this critical area.

ABBREVIATIONS

DM: Diabetes mellitus
CG: control group
LG: LASER group
CBCT: cone beam computerized tomography
HbA1c: glycated hemoglobin A1c
LLLB: low-level laser biomodulation
Implant abutment interface (IAI)
MBL: Marginal bone loss
T0: time of loading
T6: 6 months after loading
T12: 12 months after loading

REFERENCES

