Predictive factors of ectopic eruption of the maxillary permanent second molar: A retrospective study

Dina Osman ElAbbasy

Ass. Prof. of Orthodontics, Orthodontic Department, Faculty of Dentistry, Cairo University.

ABSTRACT

Aim of the study: The aim of this study was to investigate the diagnostic methods and possible predictive factors associated with maxillary second molar ectopic eruption.

Materials and Methods: This retrospective study assessed the diagnostic records of 40 adult female subjects (study models, panoramic radiographs, and lateral cephalometric radiographs) equally divided into two groups: normal maxillary second molar eruption (20 subjects, mean age 25.62 ± 5.19) and bilateral ectopic maxillary second molar eruption (20 subjects, mean age 27.78 ± 4.65). The variables were statistically analyzed by independent t-tests and Mann-Whitney U test.

Results: The mesiodistal diameter of the maxillary second premolars, first permanent molars and second permanent molars bilaterally were significantly larger in the ectopic eruption group compared to the normal group. Greater arch lengths were also recorded for the ectopic group. Regarding cephalometric measurements angles SNA, OP-17, and linear measurements PTV-16 and PTV-17 were significantly smaller in the ectopic eruption group. Angles HRL/16d-17d & Angle 1617- were significantly larger in the ectopic eruption group. Panoramic radiograph in the ectopic eruption group showed increased inclination of the maxillary molars in a distal direction compared to the normal eruption group whereby angles OP/17, OP/27 were significantly smaller in the ectopic group. Intermolar angles 1617/ and 2627/ were significantly larger in the ectopic eruption group.

Conclusion: Multiple factors are associated with the ectopic eruption of maxillary second molars. This could be used as a diagnostic aid for the prediction of this eruption disturbance.

Key Words: Ectopic eruption, Eruption disturbance, Malalignment, Prediction, Second permanent molar

Received: 7 June 2023, Accepted: 15 June 2023.

Corresponding Author: Dina Osman ElAbbasy, Ass. Prof. of Orthodontics, Orthodontic Department, Faculty of Dentistry, Cairo University. Mobile: 01009711115, E-mail: dinaosman@hotmail.com

ISSN: 2090-097X, January 2023, Vol. 14, No. 1
arch. This is important as second molars provide the distal ends of the dental arch, which maintains occlusal support for appropriate mastication. Furthermore, they assist in the coordination of facial growth. Early diagnosis of eruption disturbances is crucial in order to initiate treatment at the ideal time and to minimize complications.

First and second molars are of great importance for the normal development of the dentition and coordination of the facial growth. Haruki et al. found a strong association between second molar eruption and calcification rate and normal dentofacial growth (indicated by ANB angle and anteroposterior maxillary length) and occlusal relationship (Class II or Class III malocclusion). Normally, the eruption of mandibular second molars happens before the maxillary second molar. Lo and Moyers determined that the eruption of the maxillary second molar before the mandibular molar is indicative of Class II malocclusion.

The ectopic eruption of the maxillary second molars has not been thoroughly investigated in the literature. Only a few case reports have been published regarding this topic as well as a limited number of publications. Therefore, the aim of this retrospective study was to examine the possible factors contributing to the ectopic eruption of permanent maxillary second molars and possibly utilize them as predictive factors.

MATERIALS AND METHODS:

This study included the records of 40 Egyptian female patients from the patient database of a private orthodontic practice in Cairo, Egypt. Twenty patients had bilateral ectopic eruption of maxillary second molars (mean age 27.78 ± 4.65) and 20 patients (mean age 25.62 ±5.19) with normal maxillary second molar eruption were allocated as the normal eruption group or control group.

An ABO gauge (American board of orthodontics) (Figure 1) was used to quantify the maxillary second molar displacement.

The inclusion criteria for the normal eruption group were: a- well aligned maxillary second molars in the buccolingual direction or within 0.5 mm of malalignment, b- marginal ridge discrepancy between the maxillary first and second molars within 0.5mm, and c- the buccal cusps of the maxillary second molars within 1 mm of buccal displacement from the horizontal line joining the contralateral palatal cusps (Figure 2).

The inclusion criteria for the ectopic eruption group were: a- more than 2 mm of buccolingual displacement of maxillary second molars, b- more than 2 mm of marginal ridge discrepancy between the maxillary first and second molars, and c- the buccal cusps of the maxillary second molars buccally displaced by a value exceeding 2 mm from the horizontal line joining the contralateral palatal cusps (Figure 3).

Only cases with mild to moderate irregularity of the maxillary anterior teeth were included in the study. Exclusion criteria were: a- syndromic patients, b- systemic diseases, c- congenitally missing or impacted one or more permanent teeth in the maxillary arch or previous extractions, d- incomplete eruption of the maxillary second molars, e- abnormal crown morphology or prosthetic treatment of the second molars, f- previous orthodontic treatment, f- severe crowding g- presence of interproximal tooth wear h- gross caries involving the mesial and distal surfaces, i- supernumerary teeth or tooth anomalies, j- proclined maxillary incisors and k-incomplete or faulty records. Little irregularity index was used to quantify the amount of maxillary crowding by viewing the
dental cast from above and holding an electronic digital caliper (Stainless hardened Sakara) parallel to the occlusal plane during obtaining each measurement. \cite{21} Measurement of the mesiodistal diameter of the maxillary teeth was made directly on the study models by using a manual Boley gauge with fine tips (Dentaurum, Pforzheim, Germany) with accuracy to the nearest 0.1 mm. The tip was held perpendicular to the long axis of the tooth and the mesiodistal dimension was obtained by measuring the longest distance between the contact points of all maxillary teeth from the second molars to the central incisors. Maxillary arch length was documented by measuring the distance from the labial surface of the central incisors at the midline to the tangent of the mesial surface of the first permanent molar on the right and left side of the arch. The average value was then calculated. Maxillary intercanine and intermolar widths were also recorded.

Regarding panoramic radiograph, 6 measurements were recorded for every patient \cite{30}. First the occlusal plane (OP) was drawn from the maxillary first molar on the right side to the first molar on the left side passing through the incisal edges of the maxillary central incisors. The angles formed by the long axes of the first and second molars to the OP bilaterally as well as the angle formed between the two molars on both the right and left sides were recorded (Figure 4). The long axis of the molars was formed by the line connecting the furcation and the midpoint of the crown.

To evaluate maxillary molar inclination (16 and 17), the measurements used by Hwang et al30 were applied. The angle between HRL and the line joining the most distal convex points (d) of the maxillary first molar (16) and second molar (17) was measured (HRL/16d-17d). The angles between the OP and the long axes of the molars (OP-16, OP-17) and the angle formed between the long axes of the molars (Angle 16-17) were recorded. The two linear measurements were the shortest horizontal distance from the line perpendicular to HRL at the pterygoid point to the most distal convex points of the maxillary molars, 16d and 17d (HRL/16d-17d).

All the lateral cephalograms from the patients’ database were originally taken by the same machine with standardized criteria using Instrumentarium.
Imaging Orthoeph OC100 type cephalostate with an anode-to-midsubject distance of 152.5 cm and a midsubject-to-film distance of 14.6 cm with a standard magnification of 8%. The lateral cephalograms were imported to (CephX imaging software, ORCA Dental AI, USA), whereby the anatomical landmarks and reference lines/planes were digitally specified and tracing was carried out utilizing this software. In a random sample of 20 patients, the measurements were recorded then repeated again after a two week interval to assess measurement reproducibility.

Statistical analysis:
Numerical data was represented as mean and standard deviation (SD) values. Shapiro-Wilk’s test was used to test for normality. Homogeneity of variances was tested using Levene’s test. Other data were normally distributed, had homogenous variances across groups and were analyzed using independent t-test. The significance level was set at p<0.05 within all tests. Statistical analysis was performed with R statistical analysis software version 4.3.0 for Windows (R Core Team (2023), Foundation for Statistical Computing, Vienna, Austria.)

RESULTS:
The study was conducted on 40 cases (i.e. 20 cases per group), all were females. The mean age of the cases in the normal eruption group was (25.62±5.19) years and in the ectopic eruption group it was (27.78±4.65) and there was no significant difference between both groups (t=1.39, p=0.174). Mean and standard deviation values for age data are presented in Figure (6).

Results of intergroup comparisons and summary statistics for study model linear measurements are presented in Table (1) and in Figures (7) and (8). For teeth measurements, results showed widths of the right and left second premolars, first and second molars were significantly higher in the ectopic eruption group in comparison to normal eruption group (p<0.05). In addition, the maxillary arch length in the ectopic eruption group was also significantly higher (p<0.001). While for intermolar and intercanine widths, and other teeth measurements, the differences were not statistically significant (p>0.05).

Results of intergroup comparisons and summary statistics for panoramic radiograph angular measurements are presented in Table (2) and in Figure (9). For OP/17 and OP/27, the normal eruption group had significantly higher values the ectopic eruption group (p<0.05). However, for HRL/16d-17d angle, the ectopic eruption group had significantly higher value (p<0.001). For all other measurements, the differences were not statistically significant (p>0.05). Results of intergroup comparisons and summary statistics for lateral cephalometric measurements are presented in Table (3) and in Figures (10) and (11). For SNA, PTV-16d, PTV-17d, OP-17, Angle 16-17 measurements; the

![Figure (6): Bar chart showing mean and standard deviation (error bars) values for age (years)](image)

Table (1): Intergroup comparisons of study model linear measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>(Mean±SD) (mm)</th>
<th>Test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal eruption</td>
<td>Ectopic eruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.20±0.30</td>
<td>8.31±0.48</td>
<td>-0.90</td>
</tr>
<tr>
<td>12</td>
<td>7.14±0.38</td>
<td>7.34±0.46</td>
<td>-1.41</td>
</tr>
<tr>
<td>13</td>
<td>7.61±0.28</td>
<td>7.76±0.38</td>
<td>-1.38</td>
</tr>
<tr>
<td>14</td>
<td>7.10±0.26</td>
<td>7.26±0.42</td>
<td>-1.46</td>
</tr>
<tr>
<td>15</td>
<td>6.53±0.29</td>
<td>6.85±0.36</td>
<td>-3.10</td>
</tr>
<tr>
<td>16</td>
<td>10.16±0.51</td>
<td>10.89±0.46</td>
<td>-4.68</td>
</tr>
<tr>
<td>17</td>
<td>9.97±0.39</td>
<td>10.31±0.39</td>
<td>-2.81</td>
</tr>
<tr>
<td>21</td>
<td>8.24±0.29</td>
<td>8.35±0.46</td>
<td>-0.86</td>
</tr>
<tr>
<td>22</td>
<td>7.05±0.34</td>
<td>7.25±0.48</td>
<td>-1.52</td>
</tr>
<tr>
<td>23</td>
<td>7.64±0.29</td>
<td>7.77±0.41</td>
<td>-1.12</td>
</tr>
<tr>
<td>24</td>
<td>7.18±0.23</td>
<td>7.33±0.42</td>
<td>-1.40</td>
</tr>
<tr>
<td>25</td>
<td>6.61±0.27</td>
<td>6.85±0.40</td>
<td>-2.21</td>
</tr>
<tr>
<td>26</td>
<td>10.46±0.41</td>
<td>10.91±0.46</td>
<td>-3.29</td>
</tr>
<tr>
<td>27</td>
<td>9.96±0.31</td>
<td>10.26±0.41</td>
<td>-2.65</td>
</tr>
<tr>
<td>Maxillary arch length</td>
<td>28.09±2.15</td>
<td>30.70±1.81</td>
<td>-4.17</td>
</tr>
<tr>
<td>Maxillary intermolar width</td>
<td>44.29±4.31</td>
<td>44.72±5.30</td>
<td>-0.28</td>
</tr>
<tr>
<td>Maxillary intercanine width</td>
<td>36.16±1.43</td>
<td>36.97±1.60</td>
<td>-1.69</td>
</tr>
</tbody>
</table>

*significant (p<0.05)
ECTOPIC ERUPTION OF THE PERMANENT SECOND MOLAR

Table (2): Intergroup comparisons of panoramic radiograph angular measurements

<table>
<thead>
<tr>
<th>Angles</th>
<th>(Mean±SD) (◦)</th>
<th>Test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal eruption</td>
<td>Ectopic eruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP/16</td>
<td>89.73±2.33</td>
<td>90.82±1.97</td>
<td>-1.59</td>
</tr>
<tr>
<td>OP/17</td>
<td>82.00±2.75</td>
<td>74.44±4.78</td>
<td>6.13</td>
</tr>
<tr>
<td>OP/26</td>
<td>85.66±1.50</td>
<td>86.38±2.82</td>
<td>-1.01</td>
</tr>
<tr>
<td>OP/27</td>
<td>79.02±3.86</td>
<td>69.34±4.58</td>
<td>7.22</td>
</tr>
<tr>
<td>Angle 16/17</td>
<td>7.97±1.47</td>
<td>12.57±4.45</td>
<td>-4.39</td>
</tr>
<tr>
<td>Angle 26/27</td>
<td>6.47±1.50</td>
<td>14.05±4.35</td>
<td>-7.37</td>
</tr>
</tbody>
</table>

*significant (p<0.05)

Table (3): Intergroup comparisons of lateral cephalometric measurements

<table>
<thead>
<tr>
<th>Angles</th>
<th>(Mean±SD) (◦)</th>
<th>Test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal eruption</td>
<td>Ectopic eruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNA (◦)</td>
<td>82.22±1.93</td>
<td>80.31±2.94</td>
<td>2.44</td>
</tr>
<tr>
<td>SNB (◦)</td>
<td>79.98±1.85</td>
<td>79.16±1.36</td>
<td>1.61</td>
</tr>
<tr>
<td>ANB (◦)</td>
<td>2.24±2.33</td>
<td>1.15±2.90</td>
<td>236.50</td>
</tr>
<tr>
<td>SN-OP (◦)</td>
<td>17.64±2.89</td>
<td>16.52±2.57</td>
<td>1.28</td>
</tr>
<tr>
<td>SN-MdP (◦)</td>
<td>37.26±2.55</td>
<td>36.68±3.17</td>
<td>0.64</td>
</tr>
<tr>
<td>SN-Mx1 (◦)</td>
<td>106.89±1.98</td>
<td>107.58±2.49</td>
<td>-0.97</td>
</tr>
<tr>
<td>HRL/16d-17d (◦)</td>
<td>17.61±2.03</td>
<td>21.50±3.07</td>
<td>-4.71</td>
</tr>
<tr>
<td>PTV-16d (mm)</td>
<td>17.07±2.67</td>
<td>12.98±1.57</td>
<td>5.90</td>
</tr>
<tr>
<td>PTV-17d (mm)</td>
<td>8.21±1.61</td>
<td>5.52±1.50</td>
<td>5.48</td>
</tr>
<tr>
<td>OP-16 (◦)</td>
<td>88.19±1.66</td>
<td>85.95±3.98</td>
<td>2.32</td>
</tr>
<tr>
<td>OP-17 (◦)</td>
<td>84.07±2.07</td>
<td>78.75±4.05</td>
<td>5.22</td>
</tr>
<tr>
<td>Angle 16-17 (◦)</td>
<td>6.34±1.32</td>
<td>7.47±2.75</td>
<td>-1.66</td>
</tr>
</tbody>
</table>

*significant (p<0.05)
In this study, the study model analysis revealed a statistically significant difference in the arch length measurement between the normal and the ectopic eruption group (28.09 mm ±2.15; 30.70 mm±1.81). This was due to wider mesiodistal dimension of the second premolars, first and second permanent molars in the ectopic eruption group. The mesiodistal dimensions of the maxillary incisors, canines and first premolars were also larger in the ectopic group though not statistically significant. This was in alignment with earlier studies that concluded that crowding of teeth takes place in patients with an enlarged mesiodistal teeth dimensions. Similar results were also reported by Hwang et al30 however they found no statistically significant difference between maxillary second molars mesiodistal dimensions in both groups. Furthermore the canines and first premolars were significantly larger in the ectopic eruption than in the normal eruption group. Although statistically insignificant, the central incisors and first molars were larger in width in the ectopic eruption group.

Growth of the maxilla posteriorly at the tuberosity region occurs by bone apposition at the rate of 1mm/year starting at the age of 10 until 18 years old. This results in an increase in the distance between PTV to maxillary first molar and provides adequate space for the eruption of the maxillary second and third molars.6 Forward movement of the maxillary first molar also occurs by alveolar bone growth.38 Downward and forward growth of the maxilla also creates room for the erupting molars. It has been postulated that increased periosteal bone apposition at the posterior edge of the maxillary tuberosity occurs in subjects with marked forward growth of the maxilla.39,40 Lack of adequate bone growth at the maxillary tuberosity area is directly associated with ectopic eruption and buccal displacement of maxillary second and/or third molars.6 Forward movement of the maxillary first molar also occurs by alveolar bone growth.38 In the study by Hwang et al30, there was an association between angle ANB and distances PTV-16d and PTV-17a whereby a small ANB angle was linked with a short linear distance from PTV to maxillary first and second molars. This is aligned with the results of the present study whereby the linear cephalometric measurements PTV-16d and PTV-17a were significantly smaller in the ectopic eruption group compared to the normal eruption group.

Angle SNA was significantly smaller in the ectopic eruption group compared to the normal eruption group. This indicates that the maxilla is relatively more posteriorly located in the ectopic eruption group. This is in agreement with previous studies that reported a retro-positioned maxilla relative to the cranial base in cases with ectopic maxillary second molar eruption.13,30 Angle ANB was smaller in the ectopic eruption group but was not statistically significant. It has been previously documented that first and second molars are crucial for normal dental development as well as coordination of the facial growth.34

DISCUSSION:

The timing of second molar eruption is a clinically important factor possibly associated with different types of craniofacial skeletal morphology and malocclusion development. This event can be considered as a developmental landmark, in some cases important for the start of orthodontic treatment. It might also have bearing on the possible influence of extraoral force traction on the eruption of the maxillary second molars in the treatment of Class II patients.33

Ectopic eruption of permanent molars does not lead to marked aesthetic impairment similar to incisors or canines, however functional disorders may develop quite rapidly depending on the number of teeth affected.7 Grover and Lorton 10 stated that the second molars (0.08% of the population for upper second molars and 0.06% for lower second molars) are the most frequently non erupted permanent molars excluding third molars. The posterior position of the maxillary permanent second molar makes it difficult for the patients to notice its ectopic eruption. However, the maxillary second molars play a very important role in mastication and their malposition can lead to balancing, working and protrusive occlusal interferences.34 The most frequent position for ectopic eruption is in the distobuccal direction that makes maintaining good oral hygiene strenuous. Cureton 33 evaluated the prevalence of malaligned second molars in subjects who have not been orthodontically treated. He observed that maxillary second molars erupted in a more buccal position than did mandibular second molars. These malpositioned maxillary second molars were inclined with their roots to the mesial and their crowns to the distal. Hence, the etiology of ectopic eruption of maxillary permanent second molar should be taken into consideration during the diagnostic stage.36

Figure (11): Bar chart showing mean and standard deviation (error bars) values for lateral cephalometric linear measurements

Figure (9): Bar chart showing mean and standard deviation (error bars) values for panoramic radiograph linear measurements.

Figure (8): (A) (error bars) values for study model linear measurements.

Figure (7): Bar chart showing mean and standard deviation linear measurements.
In a study by Haruki et al.\cite{28} a strong relationship was found between second molar eruption and calcification rate as well as normal dentofacial growth (expressed by angle ANB and anteroposterior length of the maxilla) and occlusal relationship (Class II or Class III malocclusion).

Other researchers suggested that second molar development or eruption might be related to a specific pattern of jaw size or position. Suda et al.\cite{43} examined the relationship between the formation or eruption of the maxillary teeth and the skeletal pattern of the maxilla in a maxillary retrusion and a control group. They concluded no significant difference in the rate of formation of the maxillary and mandibular teeth between the two groups. However, the eruption of the maxillary second molars was delayed in the maxillary retrusion group. Another study\cite{44} evaluated subjects with skeletal Class II prognathic maxilla and found a more forward position of the maxillary first molar. Moreover, Lo and Moyers\cite{27} emphasized that the eruption of the maxillary second molar precedes that of mandibular molar in Class II malocclusion with forward positioned maxilla. In contrast to this, Demirjian et al.\cite{45} found that the association between the degree of skeletal maturity and dental development is low.

The mechanism of eruption of maxillary second molars starts with the roots directed in a palatal direction and the occlusal surface in a distobuccal direction. Normally, upon eruption, the maxillary second molars are brought to their final upright occlusal position with the opposing teeth in a mesiolingual direction during the final stages of eruption. This is confirmed by the increased inclination of the second molars relative to HRL (HRL/16d-17d) by about 4 degrees compared to the normal eruption group. Angles OP-17 and OP-27 were significantly smaller in the ectopic eruption group compared to the normal group. The intermolar angle (Angle 16-17) is statistically increased in the ectopic eruption group. This has also been confirmed in the panoramic radiograph whereby angles OP/17 and OP/27 were statistically smaller than the normal eruption group. The intermolar angles 16/17 and 26/27 were statistically smaller than the normal eruption group though not statistically significant.

CONCLUSIONS:

- Larger mesiodistal widths of maxillary second premolars, first and second permanent molars were detected in the ectopic eruption group.
- Larger arch length was present in the ectopic eruption group.
- The maxilla was in a retrusive position and the area of the maxillary tuberosity was shorter in the ectopic eruption group compared with the normal group.
- Ectopically erupted maxillary second molars displayed a more significant distal inclination compared to the normally erupted second molars.
- These factors could be used to predict ectopic eruption of maxillary permanent second molars.

CONFLICT OF INTEREST

This clinical study was self-funded by the authors, with no conflict of interest.

REFERENCES

18- Proffit WR. Contemporary Orthodontics. 3rd Edition 1999.C.V. Mosby, 012000. 6.4.2.2.2.

ECTOPIC ERUPTION OF THE PERMANENT SECOND MOLAR

